Ugrás a tartalomra
Comparative morphological examination of secretory structures of stem and leaf in laminaceae species

Nyíregyházi Egyetem 
Szerzők: Cansu Mükerrem Demirel – Csilla Tóth
Cím: Comparative morphological examination of secretory structures of stem and leaf in laminaceae species
DOI: https://doi.org/10.71066/AANY.2025.12.02
Megjelent: 2025

Letöltés

Összefoglaló

Munkánk során 6 különböző termesztett gyógynövény, a Mentha x piperita L., Melissa officinalis L., Thymus vulgaris L., Salvia officinalis L., Rosmarinus officinalis L. és a Lavandula officinalis L. illóolajat raktározó mirigyszőreinek fénymikroszkópos vizsgálatát végeztük el. Valamennyi vizsgált növényfaj esetében szár- illetve levélkeresztmetszetet készítettünk, tipizáltuk a szár, valamint az adaxiális és az abaxiális levélepidermiszen megjelenő mirigyszőröket, meghatároztuk azok denzitását. A zsályát kivéve, ahol a mirigyszőrök száma az abaxiális oldalon volt a meghatározó, a legtöbb vizsgált növényfaj esetében megállapítható volt, hogy az adaxiális epidermiszen előforduló mirigyszőrök száma meghaladta az abaxiális oldal mirigyszőreinek a számát. Megállapítottuk, hogy a citromfű és a levendula kiemelkedően magas mirigyszőrszámmal rendelkezik mind a színi, mind a fonáki epidermiszen (citromfű:  318±46,58/148±21,68; levendula: 156±61,07/150±22,36). A menta (50±23,45/32±19,24) és a kakukkfű (46±23,97/36±15,17) esetében a mirigyszőrök száma jelentősen elmaradt a többi vizsgált fajhoz képest. A kakukkfű jelentős számú és méretű pajzs alakú mirigyszőrrel rendelkezik, a legkisebb ilyen típusú mirigyszőröket a rozmaring és a levendula esetében találtuk. A mirigyszőrök véletlenszerű és egyenetlenül helyezkedtek el. A menta, a kakukkfű, valamint a levendula esetében a mirigyszőrök jelentős, mikroszkóppal jól detektálható mennyiségű illóolajat raktároztak. 

Kulcsszavak: Lamiaceae fajok, szár- és levélkeresztmetszet, színi és fonáki epidermisz, mirigyszőr típusok, mirigyszőrök száma 

ABSTRACT 

Microanatomical analyses of the essential oil storage glandular trichomes of six different fieldcultivated medicinal plants, Mentha x piperita L., Melissa officinalis L., Thymus vulgaris L., Salvia officinalis L., Rosmarinus officinalis L. and Lavandula officinalis L. were carried out using light microscopy. In the case of all examined plant species, stem and leaf cross-sections were made. Non-glandular and two types of glandular trichomes (peltate and capitate) were described. The glandular hairs appearing on the stem and both the adaxial and abaxial leaf epidermis were typified, and their density was determined. The results showed that the number of glandular trichomes of the adaxial epidermis was higher than abaxial epidermis, except for sage.  In the case of lemon balm and lavender, we observed an exceptionally high number of glandular hairs on both the upper and lower epidermis (lemon balm: 318±46.58/ 148±21.68; lavender: 156±61.07/150±22,36). In the matter of mint (50±23.45/32±19.24) and thyme (46±23.97/36±15.17) the number of glandular hairs was significantly lower compared to the values found in the other examined species. The volume density of capitate trichomes was higher than the volume density of peltate ones in every examined species. We found that thyme has a significant number of peltates and the largest peltate’s diameter, while the smallest peltates were found in rosemary and lavender. In the case of these species, the random appearance of glandular hairs, and their uneven distribution on leaf surfaces could be established. In regards to mint, thyme, and lavender, the essential oil-storing gland hairs could be easily detected by microscope. 

REFERENCES

Baran, P., Aktaş, K., Özdemir, C. 2010. Structural investigation of the glandular trichomes of endemic Salvia smyrnea L. In South African Journal of Botany, vol. 76, p. 572-578. https://doi.org/10.1016/j.sajb.2010.04.011  
Balcke, G. U., Bennewitz, S., Bergau, N., Athmer, B., Henning, A., Majovsky, P., JiménezGómez, J. M., Hoehenwarter, W., Tissier, A. 2017. Multiomics glandular trichomes reveals distinct features of central carbon metabolism supporting high productivity of specialized metabolites. The Plant cell, 29(5), 960-983. https://doi.org/10.1105/tpc.17.00060  
Barykina, R.P. 2004. Guide on Botanical Microtechique; Base and Methods; MSU: Moscow, Russia; p. 312. 
Boix, Y., Fung, Y., Victório, C.P., Defaveri, A.C.A., Arruda, R.D.C.O., Sato, A., & Lage, C.L.S. 2011. Glandular trichomes of Rosmarinus officinalis L.: Anatomical and phytochemical analyses of leaf volatiles, 1-9. https://doi.org/10.1080/11263504.2011.584075  
Bräuchler, C., Meimberg, H., Heubl, G. 2010. Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae) - Taxonomy, biogeography and conflicts, Mol. Phylogenet. Evol., 55, 501-523. https://doi.org/10.1016/j.ympev.2010.01.016  
Cantino, P.D. 1990. The phylogenetic significance of stomata and trichomes in the Labiatae and Verbenaceae, J Arnold Arbor., 71(3), 323-370. https://doi.org/10.5962/p.184532  
Carović-Stanko, K., Petek, M., Grdiša, M., Pintar, J., Be-deković, D., Herak Ćustić, M., Satovic, Z. 2016. Medicinal plants of the family Lamiaceae as functional foods a review. Czech J. Food Sci., 34(5), 377-390. https://doi.org/10.17221/504/2015-CJFS  
Choi, J.S., Kim, E.S. 2013. Structural features of glandular and non-glandular trichomes in three species of Mentha. 43(2). https://doi.org/10.9729/AM.2013.43.2.47  
Chwil, M., Nurzyńska-Wierdak, R., Chwil, S., Matraszek, R., & Neugebauerová, J. 2016. Histochemistry and micromorphological diversity of glandular trichomes in Melissa officinalis L. leaf epidermis. Acta Scientiarum Polonorum-Hortorum Cultus, 15(3), 153-172. 
Corsi, G., Bottega, S. 1999. Glandular hairs of Salvia officinalis: New data on morphology, localization and histochemistry in relation to function, Annals of Botany, 84, 657-664. https://doi.org/10.1006/anbo.1999.0961  
Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., Mnif, W. 2016. Essential oils' chemical characterization and investigation of some biological activities: a critical review. Medicines Basel, 3(4), 25. https://doi.org/10.3390/medicines3040025  
Dunkić, V., Bezić, N., Mileta, T. 2001. Xeromorphism of trichomes in Lamiaceae species. Acta Bot. Croat. 60, 277-283. 
Dunkić, V., Bezić, N., Ljubešić, N., Bočina, I. 2007. Glandular hair ultrastructure and essential oils in Satureja subspicata Vis. ssp. subspicata and ssp. liburnica Šilić. Acta Biol. Cracov. Ser. Bot., 49, 2, 45-51. 
Elagöz, V., Han, S.S., Manning, W.J. 2006. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity. Environ. Poll. 140, 395-405. https://doi.org/10.1016/j.envpol.2005.08.024  
Fahn, A. 1988. Secretory tissues in vascular plants. New Phytol. 108, 229-257. https://doi.org/10.1111/j.1469-8137.1988.tb04159.x 
Fahn, A. 2000. Structure and function of secretory cells. Advances in Botanical Research, 31, 
37-75. https://doi.org/10.1016/S0065-2296(00)31006-0  
García-Gutiérrez, E., Ortega-Escalona, F., Angeles, G. 2020. A novel, rapid technique for clearing leaf tissues. Applications in Plant Sciences 8(9): e11391. https://doi.org/10.1002/aps3.11391  
Gardner, S. D. L., Taylor, G., Bosac, C.1995. Leaf growth of hybrid poplar following exposure to elevated CO2. New Phytol. 131. https://doi.org/10.1111/j.14698137.1995.tb03057.x  
Ghonam, F.M., Turki, Z.A., Azazi, M.F. 2014. Morphological features of glandular and nonglandular trichomes in some species of family Lamiaceae. Journal of Environmental Studies and Researches. 1(1), 37-44. 
Giuliani, C.; Giovanetti, M.; Lupi, D.; Mesiano, M.P.; Barilli, R.; Ascrizzi, R.; Flamini, G.; 
Fico, G. 2020. Tools to Tie: Flower Characteristics, VOC Emission Profile, and Glandular Trichomes of Two Mexican Salvia Species to Attract Bees. Plants 2020, 9, 1645. 
https://doi.org/10.3390/plants9121645  
González-Minero, F.J., Bravo-Díaz, L., Ayala-Gómez, A. 2020. Rosmarinus officinalis L. (Rosemary): An Ancient Plant with Uses in Personal Healthcare and Cosmetics. Cosmetics, 7(4). https://doi.org/10.3390/cosmetics7040077  
Harley, R.M., Atkins, S., Budantsev, A.L., Cantino, P.D., Conn, B.J., Grayer, R.J., Harley, M.M., Kok, R.P.J., de, Krestovskaja, T.V., Morales, R., Paton, A.J., Ryding, P.O. 2004. 
Labiatae.     The     Families     and     Genera     of     Vascular     Plants.     7, 
167-275. https://doi.org/10.1007/978-3-642-18617-2_11  
Hilu, K.W.; Randall, J.L.1984. Convenient method for studying grass leaf epidermis. Taxon, 33, 413-415. https://doi.org/10.1002/j.1996-8175.1984.tb03896.x  
Huang, S.S., Kirchoff, B.K., Liao, J.P. 2008. The capitate and peltate glandular trichomes of Lavandula pinnata L.(Lamiaceae): Histochemistry, ultrastructure, and secretion. The Journal of the Torrey Botanical Society, 135(2), 155-167. https://doi.org/10.3159/07-RA-045.1  
Husain, S.Z., Marin , P.D., Šilić, Č., Qaser, M., Petković, B. 1990. A micromorphological study of some representative genera in the tribe Saturejeae. Bot. J. Linn. Soc., 103, 59-80. https://doi.org/10.1111/j.1095-8339.1990.tb00174.x  
Jachuła, J., Konarska, A., Denisow, B. 2018. Micromorphological and histochemical attributes of flowers and floral reward in Linaria vulgaris (Plantaginaceae). Protoplasma 255, 1763-1776. https://doi.org/10.1007/s00709-018-1269-2  
Kahraman, A., Celep, F., Dogan, M. 2010. Anatomy, trichome morphology and palynology of Salvia chrysophylla Stapf (Lamiaceae). In South African Journal of Botany, 76(2), 187195. https://doi.org/10.1016/j.sajb.2009.10.003  
Konarska, A., Łotocka, B. 2020. Glandular trichomes of Robinia viscosa Vent. var. hart-wigii (Koehne) Ashe (Faboideae, Fabaceae)-morphology, histochemistry and ultra-structure. Planta, 252(6), 102. https://doi.org/10.1007/s00425-020-03513-z  
Kondratenko, L. M. 1975. About interconnection between external signs of flower and content of essential oil of thyme ordinary. (O vzaimosvyazi mezhdu vneshnimi priz-nakami tsvetka i soderzhaniem efirnogo masla u timyana obyiknovennogo). In Sb. nauch. rabot VNII lek. rast., vol. 8, p. 18. 
Kowalski, R., Kowalska, G., Jankowska, M., Nawrocka, A., Kałwa, K., Pankiewicz, U., Włodarczyk-Stasiak, M. 2019. Secretory structures and essential oil composition of selected industrial species of Lamiaceae. Acta Sci. Pol. Hortorum Cultus, 18(2), 53-69. 
https://doi.org/10.24326/asphc.2019.2.6  
Luo, S. H., Luo, Q., Niu, X. M, Xie, M. J., Zhao, X., Schneider, B., Gershenzon, J., Li, S. H. 
2010.Glandular trichomes of Leucosceptrum canum harbor defensive sesterterpenoids. 
Angew. Chem. Int. Ed. 49(26), 4471- 4475. https://doi.org/10.1002/anie.201000449  
Marin, M., Koko, V., Duletić-Laušević, S., Marin, P.D., Rančić, D., Dajic-Stevanovic, Z. 2006. Glandular trichomes on the leaves of Rosmarinus officinalis: Morphology, stereology, and histochemistry. South African Journal of Botany, 72(3), 378-382, ISSN: 0254-6299. https://doi.org/10.1016/j.sajb.2005.10.009  
McCaskill, D., Croteau, R. 1995. Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha×piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197, 49-56. https://doi.org/10.1007/BF00239938  
Metcalfe, C.R., Chalk, L., 1972. Anatomy of the Dicotyledons. Oxford University Press. Oxford. ll. 
Navarro, T., El Oualidi, J. 1999. Trichome morphology in Teucrium L. (Labiatae), a taxonomic review. Anales Jardin Botanico de Madrid, 57, 277-297, ISSN 0211-1322. https://doi.org/10.3989/ajbm.1999.v57.i2.203  
Payne, W. W. 1978. A glossary of plant hair terminology. Brittonia 30, 239-255. https://doi.org/10.2307/2806659  
Salmaki, Y., Zarre, S., Jamzad, Z., Brauchler, C. 2009. Trichome micromorphology of Iranian Stachys (Lamiaceae) with emphasis on its systematic implication. Flora-morphology, distribution, functional ecology of plants, 204(5), 371-381, ISSN: 0367-2530. https://doi.org/10.1016/j.flora.2008.11.001  
Sass, J. E. 1951. Botanical Microtechnique, 2nd ed.; Iowa State College Press: Ames, IA, USA. https://doi.org/10.5962/bhl.title.5706   
Sharma, K., Dutta, N., Pattanaik, A., Hasan, Q.Z. 2003. Replacement Value of Undecorticated Sunflower Meal as a Supplement for Milk Production by Crossbred Cows and Buffaloes in the Northern Plains of India. Tropical Animal Health and Production 35, 131-145.  
https://doi.org/10.1023/A:1022873402101 
Soliman, S.S.M., Abouleish, M., Abou-Hashem, M.M.M., Hamoda, A.M., El-Keblawy, A.A. 2019. Lipophilic Metabolites and Anatomical Acclimatization of Cleome amblyocarpa in the Drought and Extra-Water Areas of the Arid Desert of UAE. Plants (Basel, Switzerland), 8(5), 132. https://doi.org/10.3390/plants8050132  
Sota, V., Themeli, S., Zekaj, Z., Kongjika, E. 2019. Exogenous cytokinins application induces changes in stomatal and glandular trichomes parameters in rosemary plants rege-nerated in vitro. Journal of Microbiology, Biotechnology and Food Sciences, 9, 25-28. https://doi.org/10.15414/jmbfs.2019.9.1.25-28  
Svidenko, L., Grygorieva, O., Vergun, O., Hudz, N., Horčinová Sedláčková V., Šimková, J., Brindza. 2018. Characteristic of leaf peltate glandular trichomes and their variability of some lamiaceae martinov family species. J. Agr. bio. div. Impr. Nut., Health Life Qual., 
124-132. https://doi.org/10.15414/agrobiodiversity.2018.2585-8246.124-132  
Wagner, G.J. 1991. Secreting glandular trichomes: more than just hairs. Plant Physiology, 96(3), 675-679. https://doi.org/10.1104/pp.96.3.675  
Werker, E., Ravid, U., Putievsky, E. 1985. Structure of glandular hairs and identification of the main components of their secreted material in some species of the Labiatae, Israel J. Bot., 34, 31-45, Corpus ID: 85614848. DOI: 10.1080/0021213X.1985.10677007. Yu, X., Liang, C., Fang, H., Qi, X., Li, W., Shang, Q. 2018. Variation of trichome morphology and essential oil composition of seven Mentha species. Biochemical Systematics and Ecology, 79, 30-36, ISSN: 0305-1978. https://doi.org/10.1016/j.bse.2018.04.016